Quaternion algebra has following maps of conjugation
x=E∘(x0+x1i+x2j+x3k)=x0+x1i+x2j+x3kx∗1=I∘(x0+x1i+x2j+x3k)=x0−x1i+x2j+x3kx∗2=J∘(x0+x1i+x2j+x3k)=x0+x1i−x2j+x3kx∗3=K∘(x0+x1i+x2j+x3k)=x0+x1i+x2j−x3k
A linear map of quaternion algebra
f:H→H yi=fijxj
has form
f=a0∘E+a1∘I+a2∘J+a3∘K
f∘x=a0x+a1∘I∘x+a2∘J∘x+a3∘K∘x=a0x+a1x∗1+a2x∗2+a3x∗3
where quaternions a0, a1, a2, a3 are defined by coordinates fij of linear map.
The set L(R;H;H) of linear maps of quaternion algebra is left H-vector space and has the basis ¯¯e=(E,I,J,K).
The set HE={a∘E:a∈H}
is R-algebra isomorphic to quaternion algebra.
No comments:
Post a Comment